Quant & m Biosciences

Nplify™

Nplify[™] is a benchtop system suitable for cell-free enzymatic production of linear DNA from plasmid with Gene of Interest.

This system is fully automated and integrates PCR-based amplification and purification steps.

Currently we have developed one type of equipment to meet your needs for linear DNA production.

This system is fully automated and integrates PCR-based amplification and purification steps.

Specifications

	Per batch	Per year
Input	461 µg of DNA	69.2 mg of DNA
Output	Up to 74 mg of purified linear DNA	Up to 11.1 g of purified linear DNA
Batch	1 per day	150 per year

Dimensions Work on prototype on-going. Dimensions unavailable

Benefits

- Speed

Days instead of months: Starting from a cellfree working bank, only a few days to obtain the linear DNA template for mRNA production without fermentation, nor plasmid linearization

- Highly efficient

Ready-to-use for IVT (*In-vitro* transcription): Generate linear DNA with 100% of the desired coding sequence via optimized primers design, ready for an optimum RNA synthesis

- Versatile

Adaptable DNA production: Rapid construct modification through our dedicated DNA design service, as well as flexibility on DNA sequences used as a template

- Safe & clean

E.coli-free product: Absence of biological and contamination risks. No residual *E.coli* genomic DNA and proteins, nor antibiotic resistance genes in the final product

- Stable DNAs

Homogenous polyA-tail: Optimized process generates final DNA product ranging from 2 to 12kb with poly-A/T tail sizes from 40 to 120nt

- Scalable & reduced cost

Compact equipment allows a µg to g scale productivity for a fraction of the CAPEX and OPEX costs of a fermentation-based production